Views from a peak

Ned Wontner (ILLC, UvA)

25th September 2023 Amsterdam

- metaphors and pictures
- unhelpful details

Lemma 3.3.33. For every n > 2, there is a Δ_{n-1}^{HC} , *n*-complete storage sequence from \mathcal{M} in L.

Proof. Let n > 2. By Lemma 2.1.20, let $\Gamma \subset \omega_1 \times \mathbf{HC}$ be a universal $\Sigma_{n-2}^{\mathbf{HC}}$ set. We define the required sequence recursively. Let (M_0, P_0) be the $<_L$ -least pair such that $(M_0, P_0) \in \mathcal{M}$. Suppose that $((M_{\xi'}, P_{\xi'}))_{\xi' \in \xi}$ is already defined. If ξ is a limit, then we set $P_{\xi} := \bigcup_{\xi' \in \xi} P_{\xi'}$ and let M_{ξ} be the $<_L$ -least ctm of ZFC such that $(M_{\xi}, P_{\xi}) \in \mathcal{M}$ and M_{ξ} contains $((M_{\xi'}, P_{\xi'}))_{\xi' \in \xi}$. If $\xi = \xi' + 1$ is a successor, let (M_{ξ}, P_{ξ}) be the $<_L$ -least pair such that:

- 1. $(M_{\xi'}, P_{\xi'})$ is strictly- $\preccurlyeq (M_{\xi}, P_{\xi})$, and
- 2. either $(M_{\xi}, P_{\xi}) \in D_{\xi'} := \{m \in \mathcal{M} : (\xi', m) \in \Gamma\}$ or there is no $(N, Q) \in D_{\xi'}$ extending (M_{ξ}, P_{ξ}) .

Recall that $\langle_L | \mathbf{HC}^2$ is $\Delta_1^{\mathbf{HC}}$ (Lemma 2.1.19). By definition, \mathcal{M} and \preccurlyeq are $\Delta_1^{\mathbf{HC}}$, and Γ is $\Sigma_{n-2}^{\mathbf{HC}}$, so $((M_{\xi}, P_{\xi}))_{\xi \in \omega_1}$ is $\Delta_{n-1}^{\mathbf{HC}}$. By Property 2., the sequence is *n*-complete. \Box

• the lake: descriptive set theory (DST)

- the lake: descriptive set theory (DST)
- three mountains: Axiom of Choice, generalised DST, and κ -topologies

- the lake: descriptive set theory (DST)
- three mountains: Axiom of Choice, generalised DST, and κ -topologies
- the moral of the story: putting the evidence together to find a philosophical account of generalisations in mathematics

• set theory is about sets

- set theory is about sets
 - we can study the infinite, e.g. the set of all whole numbers, various subsets of this
 - also has a 'foundational' rôle

- set theory is about sets
 - we can study the infinite, e.g. the set of all whole numbers, various subsets of this
 - also has a 'foundational' rôle
- DST is (mainly) about sets of (real) numbers which have a 'nice description'

- set theory is about sets
 - we can study the infinite, e.g. the set of all whole numbers, various subsets of this
 - also has a 'foundational' rôle
- DST is (mainly) about sets of (real) numbers which have a 'nice description'
- this is linked closely with graphs (and 'analysis', the continuation of secondary school calculus)

picture of set of discontinuities

• generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word "generalisation")

- generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word "generalisation")
- (often?) means to 'improve' a theorem/proof/approach

- generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word "generalisation")
- (often?) means to 'improve' a theorem/proof/approach
 possibly by making something more *abstract*

- generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word "generalisation")
- (often?) means to 'improve' a theorem/proof/approach
 - possibly by making something more abstract
 - opsibly by making something more inclusive
 - 3 ...

warm up: generalisation to find the area of a triangle

Generalisation is made of a base case and a generalised case:

warm up: generalisation to find the area of a triangle

Generalisation is made of a base case and a generalised case:

• base case: area of a **right-angle** triangle equals 1/2 height \times width

warm up: generalisation to find the area of a triangle

Generalisation is made of a base case and a generalised case:

• base case: area of a **right-angle** triangle equals 1/2 height \times width

• generalised case: area of **any** triangle equals 1/2 height \times width

- Normally, the natural numbers (1, 2, 3, ...) form a 'backbone' of the number line, \mathbb{R} .
- We have a longer number line, which has a larger infinity as the 'backbone', \mathbb{R}_{κ} , which has numbers like $\infty, \frac{1}{\infty}$, and so on

- Normally, the natural numbers (1, 2, 3, ...) form a 'backbone' of the number line, \mathbb{R} .
- We have a longer number line, which has a larger infinity as the 'backbone', \mathbb{R}_{κ} , which has numbers like $\infty, \frac{1}{\infty}$, and so on
- I looked at properties of graphs on \mathbb{R}_{κ}

- Normally, the natural numbers (1, 2, 3, ...) form a 'backbone' of the number line, \mathbb{R} .
- We have a longer number line, which has a larger infinity as the 'backbone', \mathbb{R}_{κ} , which has numbers like $\infty, \frac{1}{\infty}$, and so on
- I looked at properties of graphs on \mathbb{R}_{κ}
- Graphs can be strange, e.g. crossing without intersecting:

- Normally, the natural numbers (1, 2, 3, ...) form a 'backbone' of the number line, \mathbb{R} .
- We have a longer number line, which has a larger infinity as the 'backbone', \mathbb{R}_{κ} , which has numbers like $\infty, \frac{1}{\infty}$, and so on

Specifically

• some things generalise to \mathbb{R}_{κ} (e.g. intermediate value theorem)

- Normally, the natural numbers (1, 2, 3, ...) form a 'backbone' of the number line, \mathbb{R} .
- We have a longer number line, which has a larger infinity as the 'backbone', \mathbb{R}_{κ} , which has numbers like $\infty, \frac{1}{\infty}$, and so on

Specifically

- some things generalise to \mathbb{R}_{κ} (e.g. intermediate value theorem)
- some things are no longer true for \mathbb{R}_{κ} , e.g. adding κ -continuous need not be continuous:

10/13

- Normally, the natural numbers (1, 2, 3, ...) form a 'backbone' of the number line, \mathbb{R} .
- We have a longer number line, which has a larger infinity as the 'backbone', \mathbb{R}_{κ} , which has numbers like $\infty, \frac{1}{\infty}$, and so on

Specifically:

- some things generalise to \mathbb{R}_{κ} (e.g. intermediate value theorem)
- some things are no longer true for \mathbb{R}_{κ} , e.g. adding κ -continuous need not be κ -continuous:
- yet other things depend on the size of infinity (κ has tree property iff sharp functions have extreme points)

last lap: back to the philosophy

last lap: back to the philosophy

Our first go at describing mathematical generalisations: make a theorem/proof/approach more *abstract*, more *inclusive*, ...

9 Sui generis: generalisation *not just* abstraction or expansion

- **9** Sui generis: generalisation *not just* abstraction or expansion
- Motivations: more than *explanatoriness* (in fact, some generalisations are bad at explaining)

- **9** Sui generis: generalisation not just abstraction or expansion
- Motivations: more than *explanatoriness* (in fact, some generalisations are bad at explaining)
- Technique: generalisation not mechanical. I.e. not syntactic process e.g. not just replacing constants by variables

Thank you!