Views from a peak

Ned Wontner (ILLC, UvA)

25th September 2023
Amsterdam
A dilemma

- metaphors and pictures
A dilemma

1. metaphors and pictures
2. unhelpful details
Lemma 3.3.33. For every $n > 2$, there is a Δ^HC_{n-1}, n-complete storage sequence from \mathcal{M} in L.

Proof. Let $n > 2$. By Lemma 2.1.20, let $\Gamma \subset \omega_1 \times \text{HC}$ be a universal Σ^HC_{n-2} set. We define the required sequence recursively. Let (M_0, P_0) be the $<_L$-least pair such that $(M_0, P_0) \in \mathcal{M}$. Suppose that $((M_{\xi'}, P_{\xi'}))_{\xi' \in \xi}$ is already defined. If ξ is a limit, then we set $P_\xi := \bigcup_{\xi' \in \xi} P_{\xi'}$ and let M_ξ be the $<_L$-least ctm of ZFC such that $(M_\xi, P_\xi) \in \mathcal{M}$ and M_ξ contains $((M_{\xi'}, P_{\xi'}))_{\xi' \in \xi}$. If $\xi = \xi' + 1$ is a successor, let (M_ξ, P_ξ) be the $<_L$-least pair such that:

1. $(M_{\xi'}, P_{\xi'})$ is strictly-$\prec_\Gamma (M_\xi, P_\xi)$, and

2. either $(M_\xi, P_\xi) \in D_{\xi'} := \{ m \in \mathcal{M} : (\xi', m) \in \Gamma \}$ or there is no $(N, Q) \in D_{\xi'}$ extending (M_ξ, P_ξ).

Recall that $<_L\mid\text{HC}^2$ is Δ^HC_1 (Lemma 2.1.19). By definition, \mathcal{M} and \prec_Γ are Δ^HC_1, and Γ is Σ^HC_{n-2}, so $((M_\xi, P_\xi))_{\xi \in \omega_1}$ is Δ^HC_{n-1}. By Property 2., the sequence is n-complete. \qed
The lake: descriptive set theory (DST)

Three mountains: Axiom of Choice, generalised DST, and κ-topologies

The moral of the story: putting the evidence together to find a philosophical account of generalisations in mathematics.
the lake: descriptive set theory (DST)
- the lake: descriptive set theory (DST)
- three mountains: Axiom of Choice, generalised DST, and κ-topologies
• the lake: descriptive set theory (DST)
• three mountains: Axiom of Choice, generalised DST, and κ-topologies
• the moral of the story: putting the evidence together to find a philosophical account of generalisations in mathematics
(Descriptive) Set Theory

- set theory is about sets
set theory is about sets
- we can study the infinite, e.g. the set of all whole numbers, various subsets of this
- also has a ‘foundational’ rôle
set theory is about sets
 - we can study the infinite, e.g. the set of all whole numbers, various subsets of this
 - also has a ‘foundational’ rôle

DST is (mainly) about sets of (real) numbers which have a ‘nice description’
set theory is about sets

- we can study the infinite, e.g. the set of all whole numbers, various subsets of this
- also has a ‘foundational’ rôle

DST is (mainly) about sets of (real) numbers which have a ‘nice description’

this is linked closely with graphs (and ‘analysis’, the continuation of secondary school calculus)
picture of set of discontinuities
generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word “generalisation”)
generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word “generalisation”)
(often?) means to ‘improve’ a theorem/proof/approach
generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word “generalisation”)

(often?) means to ‘improve’ a theorem-proof/approach

possibly by making something more abstract
generalisation in mathematics is typically a good thing! (Maybe unlike other uses of the word “generalisation”)

(often?) means to ‘improve’ a theorem/proof/approach

1. possibly by making something more abstract
2. possibly by making something more inclusive
3. ...

first go at generalisation in mathematics
Generalisation is made of a base case and a generalised case:
Warm up: generalisation to find the area of a triangle

Generalisation is made of a base case and a generalised case:

- **Base case**: Area of a right-angle triangle equals \(\frac{1}{2} \) height \(\times \) width.

![Diagram of a right-angle triangle with height and width labels.]

- **Generalised case**: Area of any triangle equals \(\frac{1}{2} \) height \(\times \) width.
warm up: generalisation to find the area of a triangle

Generalisation is made of a base case and a generalised case:

- **base case**: area of a **right-angle** triangle equals $\frac{1}{2} \text{height} \times \text{width}$

 ![Right-angle triangle diagram]

- **generalised case**: area of **any** triangle equals $\frac{1}{2} \text{height} \times \text{width}$

 ![Any triangle diagram]
Normally, the natural numbers \((1, 2, 3, \ldots) \) form a ‘backbone’ of the number line, \(\mathbb{R} \).

We have a longer number line, which has a larger infinity as the ‘backbone’, \(\mathbb{R}_\kappa \), which has numbers like \(\infty, \frac{1}{\infty} \), and so on.
Normally, the natural numbers \((1, 2, 3, \ldots)\) form a ‘backbone’ of the number line, \(\mathbb{R}\).

We have a longer number line, which has a larger infinity as the ‘backbone’, \(\mathbb{R}_\kappa\), which has numbers like \(\infty, \frac{1}{\infty}\), and so on.

I looked at properties of graphs on \(\mathbb{R}_\kappa\).
Normally, the natural numbers (1, 2, 3, ...) form a ‘backbone’ of the number line, \mathbb{R}.

We have a longer number line, which has a larger infinity as the ‘backbone’, \mathbb{R}_κ, which has numbers like $\infty, \frac{1}{\infty}$, and so on.

I looked at properties of graphs on \mathbb{R}_κ.

Graphs can be strange, e.g. crossing without intersecting:

![Graph Diagram]

\[g(x) \]

\[f(x) \]

\mathbb{R}
Normally, the natural numbers \((1, 2, 3, ...)\) form a ‘backbone’ of the number line, \(\mathbb{R}\).

We have a longer number line, which has a larger infinity as the ‘backbone’, \(\mathbb{R}_\kappa\), which has numbers like \(\infty, \frac{1}{\infty}\), and so on.

Specifically:

- some things generalise to \(\mathbb{R}_\kappa\) (e.g. intermediate value theorem)
Normally, the natural numbers \((1, 2, 3, \ldots)\) form a ‘backbone’ of the number line, \(\mathbb{R}\).

We have a longer number line, which has a larger infinity as the ‘backbone’, \(\mathbb{R}_\kappa\), which has numbers like \(\infty, \frac{1}{\infty}\), and so on.

Specifically

- some things generalise to \(\mathbb{R}_\kappa\) (e.g. intermediate value theorem)
- some things are no longer true for \(\mathbb{R}_\kappa\), e.g. adding \(\kappa\)-continuous need not be continuous:
Normally, the natural numbers \((1, 2, 3, \ldots)\) form a ‘backbone’ of the number line, \(\mathbb{R}\).

We have a longer number line, which has a larger infinity as the ‘backbone’, \(\mathbb{R}_\kappa\), which has numbers like \(\infty, \frac{1}{\infty}\), and so on.

Specifically:

- some things generalise to \(\mathbb{R}_\kappa\) (e.g. intermediate value theorem)
- some things are no longer true for \(\mathbb{R}_\kappa\), e.g. adding \(\kappa\)-continuous need not be \(\kappa\)-continuous:
- yet other things depend on the size of infinity (\(\kappa\) has tree property iff sharp functions have extreme points)
last lap: back to the philosophy

Our first go at describing mathematical generalisations: make a theorem/proof/approach more abstract, more inclusive, ...

Ned Wontner
Views from a peak: Generalisations and Descriptive Set Theory
25th September 2023 12 / 13
Our first go at describing mathematical generalisations: make a theorem/proof/approach more \textit{abstract}, more \textit{inclusive}, ...
What are generalisations anyway

Last chapter gives a philosophical account of generalisation. Three main points:

1. Sui generis: generalisation not just abstraction or expansion
2. Motivations: more than explanatoriness (in fact, some generalisations are bad at explaining)
3. Technique: generalisation not mechanical. I.e. not syntactic process
What are generalisations anyway

Last chapter gives a philosophical account of generalisation. Three main points:

1. Sui generis: generalisation *not just* abstraction or expansion
Last chapter gives a philosophical account of generalisation. Three main points:

1. **Sui generis**: generalisation *not just* abstraction or expansion
2. **Motivations**: more than *explanatoriness* (in fact, some generalisations are bad at explaining)
What are generalisations anyway

Last chapter gives a philosophical account of generalisation. Three main points:

1. Sui generis: generalisation *not just* abstraction or expansion
2. Motivations: more than *explanatoriness* (in fact, some generalisations are bad at explaining)
3. Technique: generalisation not mechanical. I.e. *not* syntactic process e.g. *not just* replacing constants by variables
Thank you!