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Plan of Attack

Part 1
o Classical descriptive set theory and real analysis
Baire functions
Borel sets
Analytic sets
regularity properties

Part 2

@ Generalised descriptive set theory

@ Generalised real analysis

o A new field, R,
o Generalising theorems of real analysis
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Descriptive Set Theory

e DST is (mainly) about sets of real numbers which have a ‘nice

description’
@ this is linked closely with real analysis
@ important analysts in the early history:

Qv

Figure: Emile Borel Figure: René-Louis Baire
(1871-1956) (1874-1932)

Figure: Henri Lebesgue
(1875-1941)
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Defining sets and functions

@ notion of ‘arbitrary function’ (or set) was in the air in late 19th

Century
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Figure: some arbitrary functions (from math24.net/composition-functions)
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Defining sets and functions

@ notion of ‘arbitrary function’ (or set) was in the air in late 19th
Century

@ but arbitrary functions are difficult to analyse, so want ‘nicely
definable’ functions

@ defining sets and functions are close e.g.

Figure: picture of a set of discontinuities
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Baire functions

classification of functions f: R — R
level 0 = continuous

level 1 = pointwise limits of level 0

level & = pointwise limits of levels < «
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Figure: Fourier series of level 0 functions whose limit is level 1
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Baire functions 2

@ are Baire functions interesting? more interesting(?) definition:

@ Lebesgue: ‘analytically representable functions’ := smallest set s.t.
@ contains all constants and projections (z1, 22, ..., ) — x; and
@ closed under sums, products, and taking limits

@ ‘nice’ algebra of functions

e THEOREM: this = hierarchy of Baire functions

°

@ notion and hierarchy of definability for (interesting) functions
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Borel sets

@ Borel sets are the smallest o-algebra containing the open sets

but can also make a hierarchy here:

level 0 = open, closed

level 1 = countable unions of closed (F, ), countable intersections of
open (Gy)

level o = countable unions and intersections of levels < «
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Borel sets

@ Borel sets := smallest o-algebra containing the open sets

@ but can also make a hierarchy here:

@ level 0 = open, closed

@ level 1 = countable unions of closed (F ), countable intersections of
open (Gy)

° .

@ level a = countable unions and intersections of levels < «

o THEOREM: A C R is Borel iff it is at some level

@ moreover THEOREM: if oo < 3 then “level o' C “level g”

@ so forms a non-collapsing BOREL HIERARCHY
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Borel sets

Borel sets := smallest o-algebra containing the open sets

but can also make a hierarchy here:
level 0 = open, closed

level 1 = countable unions of closed (F,), countable intersections of
open (Gy)

level & = countable unions and intersections of levels < «
THEOREM: A C R is Borel iff it is at some level
moreover THEOREM: if & < B then "“level &' C "“level 5"
so forms a non-collapsing BOREL HIERARCHY

in fact THEOREM : the Borel hierarchy IS the Baire
function hierarchy
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Analytic sets

@ can sets get more complicated than Borel?

@ analytic := continuous image of Borel set

@ Lebesgue thought that every analytic set is Borel

@ but no, they are more complicated! In fact
THEOREM: A C R is Borel iff A is analytic and R\ A is analytic

@ so analytic sets are a level of complexity ABOVE Borel
@ are analytic sets too complicated?

@ again, no! Still have nice regularity properties
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Regularity Properties

@ property of Baire (BP): ‘almost open’

e perfect set property (PSP): either countable or has a nonempty
perfect (i.e. S =S5’) subset

@ Lebesgue measurable (LM): as in measure theory, the Lebesgue
measure is defined on the set

ZFC: not every set is BP or PSP or LM
but every Borel/analytic set is BP, PSP, LM - good for real analysis!

£.9€59
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from math3ma.com/blog/lebesgue-but-not-borel
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Research directions in Descriptive Set Theory

@ how complicated are non-BP /PSP /LM sets?
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Research directions in Descriptive Set Theory

@ how complicated are non-BP/PSP/LM sets?

Figure: higher and higher above the Borels: the projective hierarchy

@ generalising to higher cardinals!
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@ the sleight of hand: DST normally replaces R with the order of
sequences of N, denoted w*

@ w“ easy to generalise: replace w with larger cardinals
@ recall:

e a cardinal is any ‘size’ of an infinite set, e.g. the size of N or R
e we can order these cardinals by size

o this makes w the smallest cardinal
@ what if we look at k", for K > w?

@ this Generalised descriptive set theory
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A new field, R,

@ But! These k™ don't generalise everything about R

@ Importantly, k" is not a FIELD

e Is there a field which suitably generalises R? e.g.!
real closed field extending R

right size

right density

right length

Cauchy complete

00000
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A new field, R,

@ But! These k™ don't generalise everything about R
@ Importantly, k" is not a FIELD
e Is there a field which suitably generalises R? e.g.!
@ real closed field extending R
Q right size
© right density
© right length
© Cauchy complete
@ Amazingly, yes! e.g. use Surreal numbers

!Possibly other good candidate lists of requirements, that's a story for another time
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What is R,. like?

o Classically, N forms a ‘backbone’ for R.

e R, has a larger infinity, , as the ‘backbone’, and has numbers like

1
W, m etc.

Figure: from Costin, Ehrlich, and Friedman 2015

Ned Armstrong Wontner 1st April 2024 18 /23



What is R,. like?

o Classically, N forms a ‘backbone’ for R.
o R, has a larger infinity, s, as the ‘backbone’, and has numbers like
W, ———+— etc
> we+(5xXw) )
@ has order theoretic gaps, e.g. no least infinite number
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What is R,. like?

o Classically, N forms a ‘backbone’ for R.
o R, has a larger infinity, s, as the ‘backbone’, and has numbers like

w etc.

1
> we+(5xXw)
@ has order theoretic gaps, e.g. no least infinite number

@ gaps cause strange properties of R functions, e.g. crossing without
intersecting:
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Generalising real analysis

@ R, has a larger infinity, x, as the ‘backbone’, and has numbers like

1
W, e xe) et and has gaps

Specifically
@ some classical theorems of real analysis generalise to R,

@ some classical theorems do not generalise to Ry

@ yet other classical theorems generalise depending on the cardinal, s
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Generalising real analysis: Generalisations

o R, has a larger infinity, s, as the ‘backbone’, and has numbers like

1
Wy e sxe) St and has gaps

Specifically
@ some classical theorems of real analysis generalise to R, e.g.
Intermediate Value Theorem (IVT)
@ IVT fails for classical continuity for trivial reasons
@ a very natural generalisation of continuity is x-continuity; this mildly
strengthens continuity
@ IVT holds for x-continuous functions on R,
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Generalising real analysis: Non-Generalisations

@ R, has a larger infinity, x, as the ‘backbone’, and has numbers like
w, m etc., and has gaps
Specifically
@ some classical theorems do not generalise to R, e.g. adding
k-continuous need not be k-continuous
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Generalising real analysis: Non-Generalisations

@ R, has a larger infinity, x, as the ‘backbone’, and has numbers like
w, m etc., and has gaps
Specifically
@ some classical theorems do not generalise to R, e.g. adding
k-continuous need not be k-continuous

/
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Generalising real analysis: It depends

o R, has a larger infinity, , as the ‘backbone’, and has numbers like
w, m etc., and has gaps
Specifically
@ yet other classical theorems generalise depending on the cardinal,
e.g. K has tree property iff sharp functions have extreme points
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Generalising real analysis: It depends

o R, has a larger infinity, , as the ‘backbone’, and has numbers like

1
Wy e (5w St and has gaps

Specifically
@ yet other classical theorems generalise depending on the cardinal,
e.g. K has tree property iff sharp functions have extreme points
e cardinals themselves have mathematical properties

e some generalisations of theorems of real analysis depend on whether &
has a property

e often combinatorial properties are important. e.g. the tree property

o the Extreme Value Theorem
generalises to R, iff k has the tree property
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Thank you!
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