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Plan of Attack

Part 1

Classical descriptive set theory and real analysis incl. measure theory

Baire functions
Borel sets
Analytic sets
regularity properties

Part 2

Generalised descriptive set theory

Generalised real analysis

A new field, Rκ

Generalising theorems of real analysis
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Descriptive Set Theory

DST is (mainly) about sets of real numbers which have a ‘nice
description’

this is linked closely with real analysis
important analysts in the early history:

Figure: Émile Borel
(1871-1956)

Figure: René-Louis Baire
(1874-1932) Figure: Henri Lebesgue

(1875-1941)
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Figure: Émile Borel
(1871-1956)

Figure: René-Louis Baire
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Figure: René-Louis Baire
(1874-1932) Figure: Henri Lebesgue

(1875-1941)

Ned Armstrong Wontner DST via Analysis and Generalisations 1st April 2024 3 / 23



Defining sets and functions

notion of ‘arbitrary function’ (or set) was in the air in late 19th
Century (thanks to Dirichlet and Riemann)

Figure: some arbitrary functions (from math24.net/composition-functions)
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Defining sets and functions

notion of ‘arbitrary function’ (or set) was in the air in late 19th
Century (thanks to Dirichlet and Riemann)
but arbitrary functions are difficult to analyse, so want ‘nicely
definable’ functions

defining sets and functions are close e.g.

Figure: picture of a set of discontinuities
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Baire functions

classification of functions f : R → R (Baire, 1899)

level 0 = continuous

level 1 = pointwise limits of level 0 (i.e. of continuous)

...

level α = pointwise limits of levels < α

Figure: Fourier series of level 0 functions whose limit is level 1
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Baire functions 2

are Baire functions interesting?

more interesting(?) definition:

Lebesgue: ‘analytically representable functions’ := smallest set s.t.
1 contains all constants and projections (x1, x2, ..., xn) → xi and
2 closed under sums, products, and taking limits

‘nice’ algebra of functions

THEOREM: this = hierarchy of Baire functions

does this definition sound familiar (think measure theory)...?

notion and hierarchy of definability for (interesting) functions
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Borel sets

Borel sets are the smallest σ-algebra containing the open sets (recall
measure theory)

but can also make a hierarchy here:

level 0 = open, closed

level 1 = countable unions of closed (Fσ), countable intersections of
open (Gδ)

...

level α = countable unions and intersections of levels < α
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Borel sets

Borel sets := smallest σ-algebra containing the open sets (recall
measure theory)

but can also make a hierarchy here:

level 0 = open, closed

level 1 = countable unions of closed (Fσ), countable intersections of
open (Gδ)

...

level α = countable unions and intersections of levels < α

THEOREM: A ⊆ R is Borel iff it is at some level

moreover THEOREM: if α < β then “level α” ⊊ “level β”

so forms a non-collapsing BOREL HIERARCHY

in fact THEOREM (Lebesgue, 1905): the Borel hierarchy IS the Baire
function hierarchy (Baire α = Σ0

α+1-measurable)
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Analytic sets

can sets get more complicated than Borel?

analytic := continuous image of Borel set (Luzin and Suslin, 1917,
many equivalent definitions)

Lebesgue thought that every analytic set is Borel

but no, they are more complicated! In fact
THEOREM: A ⊆ R is Borel iff A is analytic and R \A is analytic

so analytic sets are a level of complexity ABOVE Borel

are analytic sets too complicated?

again, no! Still have nice regularity properties
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Regularity Properties

property of Baire (BP): ‘almost open’ (difference with an open is
meagre)

perfect set property (PSP): either countable or has a nonempty
perfect (i.e. S = S′) subset (a kind of ‘local’ continuum hypothesis)

Lebesgue measurable (LM): as in measure theory, the Lebesgue
measure is defined on the set

...

ZFC: not every set is BP or PSP or LM

but every Borel/analytic set is BP, PSP, LM - good for real analysis!

from math3ma.com/blog/lebesgue-but-not-borel
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Research directions in Descriptive Set Theory

how complicated are non-BP/PSP/LM sets?

Figure: higher and higher above the Borels: the projective hierarchy

uniformisation,

links with computation,

links with game theory,

other topological spaces,

effect of background set theoretic assumptions

...

generalising to higher cardinals!
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End of Part 1

(5 minute break)
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Generalised descriptive set theory

the sleight of hand: DST normally replaces R with the order of
sequences of N, denoted ωω (ω is the ‘size’ of infinity of N)

Ned Armstrong Wontner DST via Analysis and Generalisations 1st April 2024 15 / 23



Generalised descriptive set theory

the sleight of hand: DST normally replaces R with the order of
sequences of N, denoted ωω (ω is the ‘size’ of infinity of N)

Ned Armstrong Wontner DST via Analysis and Generalisations 1st April 2024 15 / 23
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recall:

a cardinal is any ‘size’ of an infinite set, e.g. the size of N or R
we can order these cardinals by size (κ < λ if there is an injection from
κ to λ, but not the other way around)
this makes ω the smallest cardinal

what if we look at κκ, for κ > ω?
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A new field, Rκ

But! These κκ don’t generalise everything about R

Importantly, κκ is not a FIELD (no addition, multiplication)

Is there a field which suitably generalises R? e.g.1

1 real closed field extending R (key for real analysis)
2 right size (2κ)
3 right density (à la Q, dense subset of size κ)
4 right length (à la N, ‘backbone’ of size κ)
5 Cauchy complete

Amazingly, yes! (Galeotti, 2015) e.g. use Surreal numbers

1Possibly other good candidate lists of requirements, that’s a story for another time
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3 right density (à la Q, dense subset of size κ)
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What is Rκ like?

Classically, N forms a ‘backbone’ for R.
Rκ has a larger infinity, κ, as the ‘backbone’, and has numbers like
ω, 1

ωe+(5×ω) etc.

Figure: from Costin, Ehrlich, and Friedman 2015
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Classically, N forms a ‘backbone’ for R.
Rκ has a larger infinity, κ, as the ‘backbone’, and has numbers like
ω, 1

ωe+(5×ω) etc.

has order theoretic gaps, e.g. no least infinite number (in fact LOTS
of gaps)

gaps cause strange properties of Rκ functions, e.g. crossing without
intersecting:

g(x) f(x)

L R
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Generalising real analysis

Rκ has a larger infinity, κ, as the ‘backbone’, and has numbers like
ω, 1

ωe+(5×ω) etc., and has gaps

Specifically

some classical theorems of real analysis generalise to Rκ e.g.
Intermediate Value Theorem

some classical theorems do not generalise to Rκ e.g. adding
κ-continuous need not be κ-continuous

yet other classical theorems generalise depending on the cardinal, κ
e.g. κ has tree property iff sharp functions have extreme points
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ω, 1

ωe+(5×ω) etc., and has gaps

Specifically

some classical theorems of real analysis generalise to Rκ e.g.
Intermediate Value Theorem (IVT)

1 IVT fails for classical continuity for trivial reasons (thanks to gaps)
2 a very natural generalisation of continuity is κ-continuity; this mildly

strengthens continuity
3 IVT holds for κ-continuous functions on Rκ
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Generalising real analysis: Non-Generalisations

Rκ has a larger infinity, κ, as the ‘backbone’, and has numbers like
ω, 1

ωe+(5×ω) etc., and has gaps

Specifically

some classical theorems do not generalise to Rκ e.g. adding
κ-continuous need not be κ-continuous

¬ω
f1(x)

x

f1(x) + x
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Generalising real analysis: It depends

Rκ has a larger infinity, κ, as the ‘backbone’, and has numbers like
ω, 1

ωe+(5×ω) etc., and has gaps

Specifically

yet other classical theorems generalise depending on the cardinal, κ
e.g. κ has tree property iff sharp functions have extreme points

cardinals themselves have mathematical properties (e.g. regular,
singular, compact...)
some generalisations of theorems of real analysis depend on whether κ
has a property
often combinatorial properties are important. e.g. the tree property
the Extreme Value Theorem (continuous functions reach their extrema)
generalises to Rκ iff κ has the tree property (for a generalisation of
continuity, called sharpness)
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Thank you!

Ned Armstrong Wontner DST via Analysis and Generalisations 1st April 2024 23 / 23



Bibliography

1 Ovidiu Costin, Philip Ehrlich, and Harvey M. Friedman. Integration
on the surreals: a conjecture of Conway, Kruskal and Norton.
preprint; arXiv:1505.02478. 2015

2 Lorenzo Galeotti. Computable analysis over the generalized Baire
space. MSc Thesis. ILLC, University of Amsterdam. 2015.

3 Alexander Kechris. Classical descriptive set theory. Vol. 156.
Graduate Texts in Mathematics. Springer, 2012.

4 Yiannis N. Moschovakis. Descriptive set theory. Vol. 100. Studies in
Logic and the Foundations of Mathematics. American Mathematical
Society, 2009.

5 S. M. Srivastava. A Course on Borel sets. Vol. 180. Graduate Texts
in Mathematics. Springer, 1998.

6 Ned Wontner. Views from a Peak: Generalisations and Descriptive
Set Theory. PhD Thesis. ILLC, University of Amsterdam. 2023.

Ned Armstrong Wontner DST via Analysis and Generalisations 1st April 2024 23 / 23


