Descriptive Set Theory via Analysis, and its Generalisation to Higher Cardinals

Ned Armstrong Wontner

15th March 2024 Universiti Sains Malaysia, Penang

• Classical descriptive set theory and real analysis incl. measure theory

- Classical descriptive set theory and real analysis incl. measure theory
 - Baire functions
 - Borel sets
 - Analytic sets
 - regularity properties

- Classical descriptive set theory and real analysis incl. measure theory
 - Baire functions
 - Borel sets
 - Analytic sets
 - regularity properties

Part 2

- Classical descriptive set theory and real analysis incl. measure theory
 - Baire functions
 - Borel sets
 - Analytic sets
 - regularity properties

Part 2

• Generalised descriptive set theory

- Classical descriptive set theory and real analysis incl. measure theory
 - Baire functions
 - Borel sets
 - Analytic sets
 - regularity properties

Part 2

- Generalised descriptive set theory
- Generalised real analysis

- Classical descriptive set theory and real analysis incl. measure theory
 - Baire functions
 - Borel sets
 - Analytic sets
 - regularity properties

Part 2

- Generalised descriptive set theory
- Generalised real analysis
 - A new field, \mathbb{R}_{κ}
 - Generalising theorems of real analysis

• DST is (mainly) about sets of real numbers which have a 'nice description'

- DST is (mainly) about sets of real numbers which have a 'nice description'
- this is linked closely with real analysis

- DST is (mainly) about sets of real numbers which have a 'nice description'
- this is linked closely with real analysis
- important analysts in the early history:

- DST is (mainly) about sets of real numbers which have a 'nice description'
- this is linked closely with real analysis
- important analysts in the early history:

Figure: Émile Borel (1871 - 1956)

- DST is (mainly) about sets of real numbers which have a 'nice description'
- this is linked closely with real analysis
- important analysts in the early history:

Figure: Émile Borel (1871-1956)

Figure: René-Louis Baire (1874-1932)

- DST is (mainly) about sets of real numbers which have a 'nice description'
- this is linked closely with real analysis
- important analysts in the early history:

Figure: Émile Borel (1871-1956)

Figure: René-Louis Baire (1874-1932)

Figure: Henri Lebesgue (1875-1941)

Ned Armstrong Wontner

 notion of 'arbitrary function' (or set) was in the air in late 19th Century (thanks to Dirichlet and Riemann)

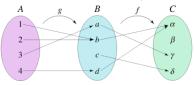


Figure: some arbitrary functions (from math24.net/composition-functions)

 notion of 'arbitrary function' (or set) was in the air in late 19th Century (thanks to Dirichlet and Riemann)

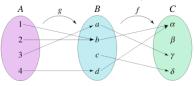


Figure: some arbitrary functions (from math24.net/composition-functions)

 notion of 'arbitrary function' (or set) was in the air in late 19th Century (thanks to Dirichlet and Riemann)

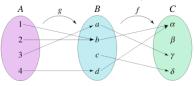
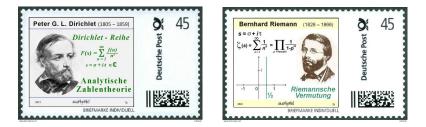


Figure: some arbitrary functions (from math24.net/composition-functions)



- notion of 'arbitrary function' (or set) was in the air in late 19th Century (thanks to Dirichlet and Riemann)
- but arbitrary functions are difficult to analyse, so want 'nicely definable' functions

- notion of 'arbitrary function' (or set) was in the air in late 19th Century (thanks to Dirichlet and Riemann)
- but arbitrary functions are difficult to analyse, so want 'nicely definable' functions
- defining sets and functions are close e.g.

- notion of 'arbitrary function' (or set) was in the air in late 19th Century (thanks to Dirichlet and Riemann)
- but arbitrary functions are difficult to analyse, so want 'nicely definable' functions
- defining sets and functions are close e.g.

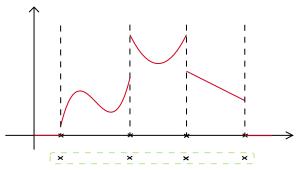


Figure: picture of a set of discontinuities

• classification of functions $f : \mathbb{R} \to \mathbb{R}$ (Baire, 1899)

- classification of functions $f : \mathbb{R} \to \mathbb{R}$ (Baire, 1899)
- level 0 = continuous

- classification of functions $f : \mathbb{R} \to \mathbb{R}$ (Baire, 1899)
- level 0 = continuous
- level 1 = pointwise limits of level 0 (i.e. of continuous)

- classification of functions $f : \mathbb{R} \to \mathbb{R}$ (Baire, 1899)
- level 0 = continuous
- level 1 = pointwise limits of level 0 (i.e. of continuous)

• ...

- classification of functions $f : \mathbb{R} \to \mathbb{R}$ (Baire, 1899)
- level 0 = continuous
- level 1 = pointwise limits of level 0 (i.e. of continuous)

• ...

• level α = pointwise limits of levels < α

- classification of functions $f : \mathbb{R} \to \mathbb{R}$ (Baire, 1899)
- level 0 = continuous
- level 1 = pointwise limits of level 0 (i.e. of continuous)

• ...

• level α = pointwise limits of levels < α

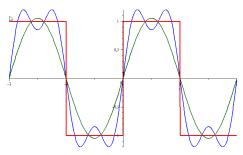


Figure: Fourier series of level 0 functions whose limit is level 1

• are Baire functions interesting?

• are Baire functions interesting? more interesting(?) definition:

- are Baire functions interesting? more interesting(?) definition:
- Lebesgue: 'analytically representable functions' := smallest set s.t.
 - () contains all constants and projections $(x_1, x_2, ..., x_n) \rightarrow x_i$ and
 - Iclosed under sums, products, and taking limits

- are Baire functions interesting? more interesting(?) definition:
- Lebesgue: 'analytically representable functions' := smallest set s.t.
 - **(**) contains all constants and projections $(x_1, x_2, ..., x_n) \rightarrow x_i$ and
 - Iclosed under sums, products, and taking limits
- 'nice' algebra of functions

- are Baire functions interesting? more interesting(?) definition:
- Lebesgue: 'analytically representable functions' := smallest set s.t.
 - **(**) contains all constants and projections $(x_1, x_2, ..., x_n) \rightarrow x_i$ and
 - Closed under sums, products, and taking limits
- 'nice' algebra of functions
- THEOREM: this = hierarchy of Baire functions

- are Baire functions interesting? more interesting(?) definition:
- Lebesgue: 'analytically representable functions' := smallest set s.t.
 - () contains all constants and projections $(x_1, x_2, ..., x_n) \rightarrow x_i$ and
 - Iclosed under sums, products, and taking limits
- 'nice' algebra of functions
- THEOREM: this = hierarchy of Baire functions
- does this definition sound familiar (think measure theory)...?

- are Baire functions interesting? more interesting(?) definition:
- Lebesgue: 'analytically representable functions' := smallest set s.t.
 - ${\color{black} 0}$ contains all constants and projections $(x_1,x_2,...,x_n) \to x_i$ and
 - Iclosed under sums, products, and taking limits
- 'nice' algebra of functions
- THEOREM: this = hierarchy of Baire functions
- does this definition sound familiar (think measure theory)...?
- notion and hierarchy of definability for (interesting) functions

Borel sets

 Borel sets are the smallest σ-algebra containing the open sets (recall measure theory)

Borel sets

- Borel sets are the smallest σ -algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:

- Borel sets are the smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed

- Borel sets are the smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_{σ}) , countable intersections of open (G_{δ})

- Borel sets are the smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_{σ}) , countable intersections of open (G_{δ})

• ...

- Borel sets are the smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_{σ}), countable intersections of open (G_{δ})
- ...
- $\bullet\,$ level $\alpha=$ countable unions and intersections of levels $<\alpha$

- Borel sets are the smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_{σ}), countable intersections of open (G_{δ})
- ...
- $\bullet\,$ level $\alpha=$ countable unions and intersections of levels $<\alpha$

Fig. 1.1

- Borel sets := smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_σ), countable intersections of open (G_δ)

• ...

• level $\alpha = {\rm countable}$ unions and intersections of levels $< \alpha$

- Borel sets := smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_{σ}) , countable intersections of open (G_{δ})
- ...
- level $\alpha = {\rm countable}$ unions and intersections of levels $< \alpha$
- THEOREM: $A \subseteq \mathbb{R}$ is Borel iff it is at some level

- Borel sets := smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_σ), countable intersections of open (G_δ)
- ...
- $\bullet~{\rm level}~\alpha={\rm countable}$ unions and intersections of levels $<\alpha$
- THEOREM: $A \subseteq \mathbb{R}$ is Borel iff it is at some level
- moreover THEOREM: if $\alpha < \beta$ then "level α " \subsetneq "level β "

- Borel sets := smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_σ), countable intersections of open (G_δ)
- ...
- $\bullet~{\rm level}~\alpha={\rm countable}$ unions and intersections of levels $<\alpha$
- THEOREM: $A \subseteq \mathbb{R}$ is Borel iff it is at some level
- moreover THEOREM: if $\alpha < \beta$ then "level α " \subsetneq "level β "
- so forms a non-collapsing BOREL HIERARCHY

- Borel sets := smallest σ-algebra containing the open sets (recall measure theory)
- but can also make a hierarchy here:
- level 0 = open, closed
- level 1 = countable unions of closed (F_σ), countable intersections of open (G_δ)
- ...
- $\bullet~{\rm level}~\alpha={\rm countable}$ unions and intersections of levels $<\alpha$
- THEOREM: $A \subseteq \mathbb{R}$ is Borel iff it is at some level
- moreover THEOREM: if $\alpha < \beta$ then "level α " \subsetneq "level β "
- so forms a non-collapsing BOREL HIERARCHY
- in fact THEOREM (Lebesgue, 1905): the Borel hierarchy IS the Baire function hierarchy (Baire $\alpha = \Sigma_{\alpha+1}^{0}$ -measurable)

• can sets get more complicated than Borel?

- can sets get more complicated than Borel?
- analytic := continuous image of Borel set (Luzin and Suslin, 1917, many equivalent definitions)

- can sets get more complicated than Borel?
- analytic := continuous image of Borel set (Luzin and Suslin, 1917, many equivalent definitions)
- Lebesgue thought that every analytic set is Borel

- can sets get more complicated than Borel?
- analytic := continuous image of Borel set (Luzin and Suslin, 1917, many equivalent definitions)
- Lebesgue thought that every analytic set is Borel
- but no, they are more complicated! In fact THEOREM: A ⊆ ℝ is Borel iff A is analytic and ℝ \A is analytic

- can sets get more complicated than Borel?
- analytic := continuous image of Borel set (Luzin and Suslin, 1917, many equivalent definitions)
- Lebesgue thought that every analytic set is Borel
- but no, they are more complicated! In fact THEOREM: A ⊆ ℝ is Borel iff A is analytic and ℝ \A is analytic
- so analytic sets are a level of complexity ABOVE Borel

- can sets get more complicated than Borel?
- analytic := continuous image of Borel set (Luzin and Suslin, 1917, many equivalent definitions)
- Lebesgue thought that every analytic set is Borel
- but no, they are more complicated! In fact THEOREM: A ⊆ ℝ is Borel iff A is analytic and ℝ \A is analytic
- so analytic sets are a level of complexity ABOVE Borel
- are analytic sets too complicated?

- can sets get more complicated than Borel?
- analytic := continuous image of Borel set (Luzin and Suslin, 1917, many equivalent definitions)
- Lebesgue thought that every analytic set is Borel
- but no, they are more complicated! In fact THEOREM: A ⊆ ℝ is Borel iff A is analytic and ℝ \A is analytic
- so analytic sets are a level of complexity ABOVE Borel
- are analytic sets too complicated?
- again, no! Still have nice regularity properties

• property of Baire (BP): 'almost open' (difference with an open is meagre)

- property of Baire (BP): 'almost open' (difference with an open is meagre)
- perfect set property (PSP): either countable or has a nonempty perfect (i.e. S = S') subset (a kind of 'local' continuum hypothesis)

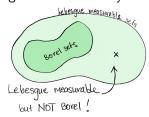
- property of Baire (BP): 'almost open' (difference with an open is meagre)
- perfect set property (PSP): either countable or has a nonempty perfect (i.e. S = S') subset (a kind of 'local' continuum hypothesis)
- Lebesgue measurable (LM): as in measure theory, the Lebesgue measure is defined on the set

- property of Baire (BP): 'almost open' (difference with an open is meagre)
- perfect set property (PSP): either countable or has a nonempty perfect (i.e. S = S') subset (a kind of 'local' continuum hypothesis)
- Lebesgue measurable (LM): as in measure theory, the Lebesgue measure is defined on the set

...

- property of Baire (BP): 'almost open' (difference with an open is meagre)
- perfect set property (PSP): either countable or has a nonempty perfect (i.e. S = S') subset (a kind of 'local' continuum hypothesis)
- Lebesgue measurable (LM): as in measure theory, the Lebesgue measure is defined on the set
- ...
- ZFC: not every set is BP or PSP or LM

- property of Baire (BP): 'almost open' (difference with an open is meagre)
- perfect set property (PSP): either countable or has a nonempty perfect (i.e. S = S') subset (a kind of 'local' continuum hypothesis)
- Lebesgue measurable (LM): as in measure theory, the Lebesgue measure is defined on the set
- ...
- ZFC: not every set is BP or PSP or LM
- but every Borel/analytic set is BP, PSP, LM good for real analysis!



from math3ma.com/blog/lebesgue-but-not-borel

• how complicated are non-BP/PSP/LM sets?

• how complicated are non-BP/PSP/LM sets?

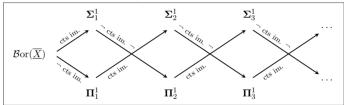


Figure: higher and higher above the Borels: the projective hierarchy

• how complicated are non-BP/PSP/LM sets?

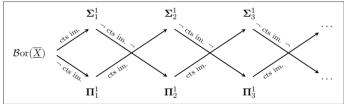


Figure: higher and higher above the Borels: the projective hierarchy

- uniformisation,
- links with computation,
- links with game theory,
- other topological spaces,
- effect of background set theoretic assumptions

...

• how complicated are non-BP/PSP/LM sets?

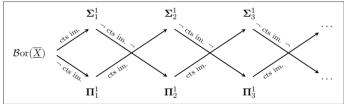


Figure: higher and higher above the Borels: the projective hierarchy

- uniformisation,
- links with computation,
- links with game theory,
- other topological spaces,
- effect of background set theoretic assumptions

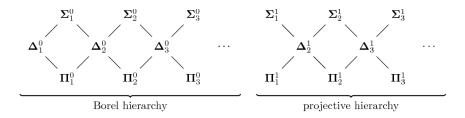
...

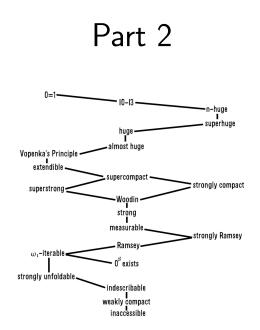
• generalising to higher cardinals!

Ned Armstrong Wontner

12 / 23

End of Part 1





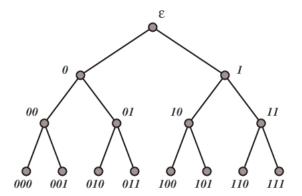
14 / 23

Generalised descriptive set theory

 the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)

Generalised descriptive set theory

 the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)



- the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)
- ω^{ω} easy to generalise: replace ω with larger cardinals

- the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)
- ω^{ω} easy to generalise: replace ω with larger cardinals
- recall:
 - $\bullet\,$ a cardinal is any 'size' of an infinite set, e.g. the size of $\mathbb N$ or $\mathbb R$

- the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)
- ω^{ω} easy to generalise: replace ω with larger cardinals
- recall:
 - $\bullet\,$ a cardinal is any 'size' of an infinite set, e.g. the size of $\mathbb N$ or $\mathbb R$
 - we can order these cardinals by size ($\kappa < \lambda$ if there is an injection from κ to λ , but not the other way around)

- the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)
- ω^{ω} easy to generalise: replace ω with larger cardinals
- recall:
 - $\bullet\,$ a cardinal is any 'size' of an infinite set, e.g. the size of $\mathbb N$ or $\mathbb R$
 - we can order these cardinals by size ($\kappa < \lambda$ if there is an injection from κ to λ , but not the other way around)
 - ${\, \bullet \,}$ this makes ω the smallest cardinal

- the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)
- ω^{ω} easy to generalise: replace ω with larger cardinals
- recall:
 - $\bullet\,$ a cardinal is any 'size' of an infinite set, e.g. the size of $\mathbb N$ or $\mathbb R$
 - we can order these cardinals by size ($\kappa < \lambda$ if there is an injection from κ to λ , but not the other way around)
 - ${\, \bullet \,}$ this makes ω the smallest cardinal
- what if we look at κ^{κ} , for $\kappa > \omega$?

- the sleight of hand: DST normally replaces ℝ with the order of sequences of ℕ, denoted ω^ω (ω is the 'size' of infinity of ℕ)
- ω^{ω} easy to generalise: replace ω with larger cardinals
- recall:
 - $\bullet\,$ a cardinal is any 'size' of an infinite set, e.g. the size of $\mathbb N$ or $\mathbb R$
 - we can order these cardinals by size ($\kappa < \lambda$ if there is an injection from κ to λ , but not the other way around)
 - this makes ω the smallest cardinal
- what if we look at κ^{κ} , for $\kappa > \omega$?
- this Generalised descriptive set theory

• But! These κ^κ don't generalise everything about ${\mathbb R}$

- But! These κ^{κ} don't generalise everything about $\mathbb R$
- Importantly, κ^{κ} is not a FIELD (no addition, multiplication)

- But! These κ^{κ} don't generalise everything about ${\mathbb R}$
- Importantly, κ^{κ} is not a FIELD (no addition, multiplication)
- Is there a field which suitably generalises \mathbb{R} ? e.g.¹

- But! These κ^{κ} don't generalise everything about ${\mathbb R}$
- Importantly, κ^{κ} is not a FIELD (no addition, multiplication)
- Is there a field which suitably generalises \mathbb{R} ? e.g.¹
 - \blacksquare real closed field extending $\mathbb R$ (key for real analysis)
 - 2 right size (2^{κ})
 - **3** right density (à la \mathbb{Q} , dense subset of size κ)
 - **④** right length (à la \mathbb{N} , 'backbone' of size κ)
 - Oauchy complete

¹Possibly other good candidate lists of requirements, that's a story for another time

- But! These κ^{κ} don't generalise everything about ${\mathbb R}$
- Importantly, κ^{κ} is not a FIELD (no addition, multiplication)
- Is there a field which suitably generalises $\mathbb{R}?~\text{e.g.}^1$
 - **1** real closed field extending \mathbb{R} (key for real analysis)
 - 2 right size (2^{κ})
 - **3** right density (à la \mathbb{Q} , dense subset of size κ)
 - right length (à la \mathbb{N} , 'backbone' of size κ)
 - Sauchy complete
- Amazingly, yes! (Galeotti, 2015) e.g. use Surreal numbers

What is \mathbb{R}_{κ} like?

- \bullet Classically, $\mathbb N$ forms a 'backbone' for $\mathbb R.$
- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc.

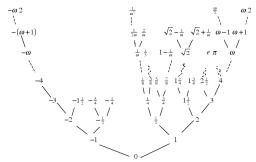


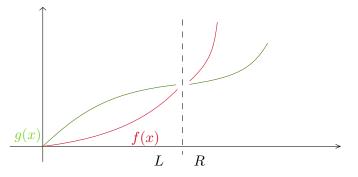
Figure: from Costin, Ehrlich, and Friedman 2015

What is \mathbb{R}_{κ} like?

- Classically, $\mathbb N$ forms a 'backbone' for $\mathbb R$.
- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc.
- has order theoretic gaps, e.g. no least infinite number (in fact LOTS of gaps)

What is \mathbb{R}_{κ} like?

- Classically, $\mathbb N$ forms a 'backbone' for $\mathbb R$.
- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc.
- has order theoretic gaps, e.g. no least infinite number (in fact LOTS of gaps)
- gaps cause strange properties of ℝ_κ functions, e.g. crossing without intersecting:



- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems of real analysis generalise to \mathbb{R}_{κ} e.g. Intermediate Value Theorem
 - some classical theorems do not generalise to ℝ_κ e.g. adding κ-continuous need not be κ-continuous
 - yet other classical theorems generalise depending on the cardinal, κ e.g. κ has tree property iff sharp functions have extreme points

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems of real analysis generalise to \mathbb{R}_{κ} e.g. Intermediate Value Theorem (IVT)

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems of real analysis generalise to \mathbb{R}_{κ} e.g. Intermediate Value Theorem (IVT)
 - IVT fails for classical continuity for trivial reasons (thanks to gaps)

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems of real analysis generalise to \mathbb{R}_{κ} e.g. Intermediate Value Theorem (IVT)
 - IVT fails for classical continuity for trivial reasons (thanks to gaps)
 - 2 a very natural generalisation of continuity is κ-continuity; this mildly strengthens continuity

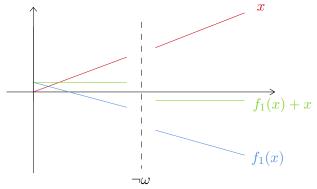
- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems of real analysis generalise to \mathbb{R}_{κ} e.g. Intermediate Value Theorem (IVT)
 - IVT fails for classical continuity for trivial reasons (thanks to gaps)
 - 2 a very natural generalisation of continuity is κ-continuity; this mildly strengthens continuity
 - **③** IVT holds for κ -continuous functions on \mathbb{R}_{κ}

Generalising real analysis: Non-Generalisations

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems do not generalise to \mathbb{R}_{κ} e.g. adding κ -continuous need not be κ -continuous

Generalising real analysis: Non-Generalisations

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps Specifically
 - some classical theorems do not generalise to \mathbb{R}_{κ} e.g. adding κ -continuous need not be κ -continuous



- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps
- Specifically
 - yet other classical theorems generalise depending on the cardinal, κ e.g. κ has tree property iff sharp functions have extreme points

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps
- Specifically
 - yet other classical theorems generalise depending on the cardinal, κ e.g. κ has tree property iff sharp functions have extreme points
 - cardinals themselves have mathematical properties (e.g. regular, singular, compact...)

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps
- Specifically
 - yet other classical theorems generalise depending on the cardinal, κ e.g. κ has tree property iff sharp functions have extreme points
 - cardinals themselves have mathematical properties (e.g. regular, singular, compact...)
 - $\bullet\,$ some generalisations of theorems of real analysis depend on whether $\kappa\,$ has a property

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps
- Specifically
 - yet other classical theorems generalise depending on the cardinal, κ e.g. κ has tree property iff sharp functions have extreme points
 - cardinals themselves have mathematical properties (e.g. regular, singular, compact...)
 - $\bullet\,$ some generalisations of theorems of real analysis depend on whether $\kappa\,$ has a property
 - often combinatorial properties are important. e.g. the tree property

- \mathbb{R}_{κ} has a larger infinity, κ , as the 'backbone', and has numbers like $\omega, \frac{1}{\omega^e + (5 \times \omega)^{\omega}}$ etc., and has gaps
- Specifically
 - yet other classical theorems generalise depending on the cardinal, κ e.g. κ has tree property iff sharp functions have extreme points
 - cardinals themselves have mathematical properties (e.g. regular, singular, compact...)
 - $\bullet\,$ some generalisations of theorems of real analysis depend on whether $\kappa\,$ has a property
 - often combinatorial properties are important. e.g. the tree property
 - the Extreme Value Theorem (continuous functions reach their extrema) generalises to R_κ iff κ has the tree property (for a generalisation of continuity, called *sharpness*)

Thank you!

Bibliography

- Ovidiu Costin, Philip Ehrlich, and Harvey M. Friedman. Integration on the surreals: a conjecture of Conway, Kruskal and Norton. preprint; arXiv:1505.02478. 2015
- Output: Computable analysis over the generalized Baire space. MSc Thesis. ILLC, University of Amsterdam. 2015.
- Alexander Kechris. Classical descriptive set theory. Vol. 156. Graduate Texts in Mathematics. Springer, 2012.
- Yiannis N. Moschovakis. *Descriptive set theory*. Vol. 100. Studies in Logic and the Foundations of Mathematics. American Mathematical Society, 2009.
- S. M. Srivastava. A Course on Borel sets. Vol. 180. Graduate Texts in Mathematics. Springer, 1998.
- Ned Wontner. Views from a Peak: Generalisations and Descriptive Set Theory. PhD Thesis. ILLC, University of Amsterdam. 2023.