(1) (Formalisation) Write down formulas in the language of set theory to express the following concepts:
 (a) $A = \emptyset$,
 (b) A is a relation,
 (c) $A = B \times C$.

(2) (Ordered pairs and n-tuples) Recall the definition of the ordered pair: $(a, b) = \{\{a\}, \{a, b\}\}$. Let p be an ordered pair.
 (a) Write down a formula to express “x is the first coordinate of p.”
 (b) Write down a formula to express “y is the second coordinate of p.”

(3) (Power set) Given a set A, prove that its power set $\mathcal{P}(A)$ is unique. Why does the power set exist?

(4) (Generalised pairs) Let A, B and C be sets. Show that there is a set P such that $x \in P$ if and only if $x = A$ or $x = B$ or $x = C$.

(5) (Symmetric difference)
 (a) Show that the set of all x such that $x \in A$ and $x \notin B$ exists.
 (b) Show that for sets A and B there exists a unique C such that $x \in C$ if and only if either $x \in A$ and $x \notin B$ or $x \in B$ and $x \notin A$.

(6) (Intersections) Prove that $\bigcap S$ exists for all $S \neq \emptyset$. Where is the assumption $S \neq \emptyset$ used in the proof?

(7) (The Axiom of Existence) Replace The Axiom of Existence with the following weaker postulate:

 Weak Axiom of Existence: Some sets exist.

 Prove the Axiom of Existence using the Weak Axiom of Existence and the Comprehension Schema.